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SECTION I

INTRODUCTION

Aerodynamics of missiles at high angle of attack has become

increasingly important for modern design requirements. Examples

of this are high maneuverability of air-to-air-missiles and high

launch angle of attack. At high angle of attack a body of revolu-

tion sheds two symmetric vortices from the leeside of the body

and these grow in strength along the length of the body. The

missile's attached lifting surfaces are immersed in this vortex

wake flow and, consequently, the surface pressure distributions

are significantly changed from the potential flow case. This,

in turn, causes nonlinearities in the forces and moments produced

by the lifting surfaces. These nonlinearities have been known to

cause serious flight stability and controllability problems in

missile dynamics.

Attempts at predicting the forces and moments produced by

lifting surfaces in a symmetric body vortex wake have met with

moderate success. Very early work was done by Mello and Sivier1

for cruciform fin missiles in supersonic flow. References 2 and

3 were reasonably successful for incompressible and supersonic

flow, respectively, but they only considered rectangular fin

planforms. The approach taken in Refs. 2 and 3 was to calculate

the body flow field using a vortex modeling technique and then

use this as input to a lifting theory. The most extensive work

on the subject has been achieved by Nielson and his associates

(see e.g., Refs 4-7). They have attacked the very difficult

problem of a general canard-fin-body configuration in transonic

1
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and supersonic flow with both symmetric and asymmetric body vortices

and canard vortices. Their approach is a combination of slender

body theory, Deffenbaugh's 8 ' 9 method for the impulse flow analogy,

and data base experimental input for fin (or wing) alone charac-

teristics.

The present investigation is concerned with the prediction of

fin forces and moments on missiles at high angle of attack in sub-

sonic and transonic flow. The body is assumed to be a circular

cylinder with only cruciform fins (or wings) as attached lifting

surfaces. The fins are assumed to be planar and have straight

leading, trailing, and tip chord edges. The leading edge can

have arbitrary sweep back and the trailing edge can be swept

back or forward. The missile can have an arbitray roll (or

bank) angle and each fin can have arbitrary control deflection.

The vortices shed from the body are assumed to be symmetrically

located with respect to the angle of attack plane and of equal

strength but opposite rotational sense. The highest angle of

attack of the body for which the body vortices remain symmetric

depends on the nose fineness ratio, body fineness ratio, and

Mach number; but normally this angle is near 25'. The method of

calculating the body flow field will be discussed first then the

lifting theory for the prediction of fin forces and moments is

developed. The body flow field model and lifting theory use

some empirical data, but the user of the method need not provide

any additional data. A computer program was written to implement

the present method.

2



Extensive comparisons are made between predicted results and

experimental measurements. Included in the comparisons are:

panel normal force, root bending moment, induced roll moment,

nonlinear roll damping moment, pitch (or yaw) control forces,

and roll control forces. The force and moment predictions

are compared with experimental data for six different fin geo-

metries; these include delta, clipped delta, and rectangular

planforms. Predictions for wing alone normal force charac-

teristics are compared with data for rectangular, delta,

clipped delta, diamond, arrow, clipped arrow, and trapezoidal

planforms. Extensive discussions are given whih explain the

underlying aerodynamic causes of fin force and moment non-

linearities and how these are related to fin geometry.

3



SECTION II

AERODYNAMIC ANALYSIS

The general approach to the aerodynamics of the problem is

to calculate the body flow field and then calculate the forces

and moments of attached lifting surfaces exposed to this flow

field. This approach is clearly based on the assumption that

the body flow field is not significantly affected by the flow

induced by the lifting surfaces. This assumption implies that

the present analysis is not appropriate for missile configura-

tions in which the fin root chord is a large portion of the

length of the missile body. The present analysis also assumes

that there is only one set of lifting surfaces (wings or fins)

and that it is arranged in a cruciform configuration. The

present approach could be applied to a two or three fin

configuration by making appropriate modifications to the

lifting theory.

This present approach naturally divides the analysis into

two areas: the body flow field and the prediction of lifting

surface forces and moments. The model of the body flow field

was developed previously in Refs. 2 and 10. For completeness,

however, the model and the associated computational procedure

will be described in this report. The prediction of lifting

surface forces and moments will be described in two phases.

First, the lifting theory for calculating the normal force

distribution and the total normal force of the lifting

surface in uniform approach flow will be described. Second,

4



the model of the body flow field and the lifting theory

will be combined to yield a method for predicting forces

and moments of attached lifting surfaces.

1. BODY FLOW FIELD

The flow field of a circular cylindrical body at high angle

. of attack is dominated by the presence of body vortices and

their associated feeding sheets. Figure 1 shows the coordinate

system and a schematic of the body vortex wake flow. These

vortices increase in strength as the angle of attack or body

length increases. To model this complex separated flow, the

flow is divided into the cross-flow components, vc and wc, and

the axial flow component, U cos ab. The local flow velocity

can then be expressed as:

V = U cos%1 + V w (I)

It is assumed that the steady, three-dimensional, body flow

field can be divided into a constant axial flow component and the

two-dimensional, potential, flow about a circular cylinder with

vortices in the wake and their associated image vortices inside

the cylinder. Essentially all of the vorticity is located in-

side the vortex cores of the primary body vortices and the

vortex feeding sheets connecting the body boundary layer separa-

tion points and the primary body vortices. Figure 2 shows the

primary and sheet vortices in the cross-flow plane. Using this

model the cross-flow velocity components can be written as

5
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and Uc = ~in is the free stream cross-flow velocity,

a is the body radius, £9 is the strength of a primary body

vortex, £s is the strength of a vortex sheet, yj, zj is the

location of the j'th vortex, Nv is the total number of vortices

in the cross-flow plane, and rc is the vortex core radius. The

dependence of £p, Fs y, YI l and rc on angle of attack and

I body length is taken from experimental measurements.

1 6

'I
Y 2



The exponential term in Eqs. (2a) and (2b) was included so

as to model the solid-body type rotation in the cores of the

primary body vortices. This method of approximating the vortex

cores yields a cross-flow velocity field which is continuous,

whereas simply imposing a solid body rotation onto a potential

flow field does not.

Utilizing the assumption of a symmetric vortex wake, the

relationship between the locations of all of the vortices in

the cross-flow plane becomes
2 / 2 2

Yj="jz= a jz.jz+ zj. 1 ) I =a+for j = 2,6,10,...Nv - 2 (3a)

z = = a Zjl/(y. + z)
i +1 J-1 + 3-1

Y= "YJ-3 and zj = zJ-3 for S = 4,8,12,-...V 3b)

With these equations the location of all of the vortices can

be related to the location of the vortices external to the body

in the positive y - z quadrant, i.e., j = l15, 9 ,...Nv- 3.

The location of the right-hand vortex sheet, ss rseiO, is

given as

88 = [a cos(r 0/2 01) + (r, + r) sin2 (T, 0/2 01)/

(4){1+ (r, + r.(1- 0)/a)] elio Sg0:501

where rI, Oi is the radial and angular location, respectively,

of primary vortex number 1, and Oss is the angle at which the

sheet separates from the body. The vortex sheet location, as

given by Eq. (4), yields a slight improvement in comparison with

experimental data of Ref. 11 as compared with that used in

Refs. 2 and 10. Eq. (4) requires that the vortex sheet terminates

at the core radius of the primary vortex, whereas the equation

7



used in Refs. 2 and 10 terminated the sheet at the center of the

primary vortex.

Oss is defined as the angle at which the radial location of

the sheet achieves a value of 1.01a. Therefore,

co sýr 0s/2 0 + (r + r ) sin2(T 0ss/2 01)! (5)

[a + (rl + re)(01 - =ss)]2 1.01

The low strength vortices which represent the vortex sheet

are equally spaced in arc length along the sheet. The arc

length of the vortex sheet is

=+ d• (6a)

ss

where rs is the magnitude of ss, from Eq. (4), and

=r -(a Tr/2 01) sin(Tr 0/2 01) + corr/2){+

drp

[I(r1+ re) rl/,I sin(rr 0/2 01) 1os(T 0/2 0l)1i+

(r + r c)(1- 0)/a + I(r + rc)2/a, sin2,( 0/2 01

(1 + (r 1 + rC)(01 - 0)a2 (6b)

The first vortex in the sheet, vortex number 5, is located

at the point where the sheet leaves the body so that r 5 = 1.01a

and 05 = Oss" The angular position for vortex numbers

5,9,13,9...N-3 is found from

- ~ C 22 (,21/2

kNV 4 (7)

Once the angular position is known from Eq. (7), then from Eq.

(4), one obtains the radial location:

8
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rj =a cos(r cj/2 01) +(r 1 + rc) sin2 (i ( /2 01)(
(8)

The experimental inputs required by the theory will now be

discussed. The total strength of all the vorticity, Ft, (primary

vortex and feeding sheet) in each half-plane of the wake is

taken from the experimental data of Grosche1 2 .

rt/(d d)= .35(x/a - 6) %2 for x/a > 6OD (9)

This equation represents the data of Grosche for 70 Ob !5 200

and 5 s X/d ! 13 for incompressible flow. No extensive body

vortex wake surveys have been conducted in compressible subsonic

flow.

The division of vorticity between the primary vortex and

the feeding sheet is taken from a correlation of data given in

_1 Ref. 11. This correlation is represented by

.15(xla)- x + .008(x/a) 2  2XI ~r (10)

where rt = r + r.. Although the data from Ref. 11 is for

supersonic flow, it is a reasonablr. assumption that the ratio
of primary vortex strength to total vorticity is the same in

subsonic and supersonic flow.

The location of the primary vortex is taken from the ex-

Speriental data of Grosche 1 2 Tinling and Allen1 3 , and Fidler,

Nielsen and Schwind.1 The experimental data for the location

of the right-hand primary vortex (vortex number 1) in polar

coordinates is approximated by

9



R7 .1

01 74 0

r1/a = .70 + .( 1+ (xla + 6)

These equations incorporate the moderate increase in radial

location of the vortex center with Mach number measured by

Tinling and Allen.

The radius of the vortex core is taken from the data of

Ref. 11. A fit of the data for angles of attack of 100 and

150 and body lengths from 7 to 14 calibers is given by

r =/a .030(x/a) (12)

The computational procedure for the body flow field

model will now be discussed. The order of calculation is as

follows:

(1) ab and x are set.

(2) rt is calculated from Eq. (9).

(3) rp and rs are calculated from Eq. (10).

(4) 01 and rI are calculated from Eq. (11).

(5) rc is calculated from Eq. (12).

(6) 9ss is computed from Eq. (5) by increasing Oss from 00

in increments of .0101 until Eq. (5) is satisfied. Re-

call that Oss = 05 and r 5 = 1.01a.

(7) L8 is calculated from Eq. (6) by Simpsons's Rule.

(8) Oj for j = 9,13,.. Nv-3 is calculated from Eq. (7)

by increasing Oj from Oj-4 in increments of .0101 until

10I



the integral equation is satisfied. The integral is

evaluated by Simpson's Rule. In the present work N is

set at 44, that is, 10 vortices in each sheet.

(9) rj for j = 9,13...NNv-3 is calculated from Eq. (8).

(10) yj, zj for j = 1,5,9...Nv-3 are calculated from 0j, rj

using the polar to cartesian transformation.

(11) yj, zj for all remaining vortices are calculated from

Eq. (3).

(12) vc, wc are calculated from Eq. (2).

2. LIFTING THEORY

Various lifting theories were considered for use with the

present flow model for the prediction of forces and moments pro-

duced by fins. The criteria by which a lifting theory was chosen

was that the theory must be able to consider very nonuniform,

rotational, approach flow and it must include fin stall and post-

stall characteristics. These criteria quickly limited the possible

theories to strip theory. In strip theory it is assumed that the

normal force on a chordwise strip of fin can be calculated by using

the local dynamic pressure and angle of attack of the strip, inde-

pendent of adjacent chordwise strips. Significarnt elements included

in the present lifting theory are the following: normal force dis-

tribution over the lifting surface depends upon fin aspect ratio and

leading and trailing edge sweep, individual control deflection of

each fin is allowed, fin-fin interference due to both control deflec-

tion and rolling rate is included, normal force depends upon freestream

Mach number, and nonuniform approach flow alters the effective

leading edge sweep.



7- -- -M- -7 
" T7-

a. Local Normal Force

The local normal force on a differential element of the fin

surface is written as (see Fig. 3)

dN = Cn q dx dr (13)

where Cn is the local normal force coefficient and q is the local

dynamic pressure, including that due to missile rolling speed.

The local normal force coefficient Cn is composed of three separate

functions: first, the normal force due to the local angle of at-

tack of the differential element; second, the local chordwise

distribution; and third, the local spanwise distribution.

Assuming a product form of the function, one has

cn = Co() C(x,r) s(r) (14)

where a is a geometric scaling factor, CN(aI ) is the local normal

force coefficient due to local angle of attack, and C(x,r) and

S(r) are the chordwise and spanwise normal force distributions,

respectively, for uniform approach flow.

For arbitrary planform fins it greatly simplifies matters if

C and S are written in terms of appropriate fin oriented coor-

dinates. To determine the appropriate fin oriented variables,

first write the x coordinate of the leading and trailing edges

of the fin as

12



X e = X1 + (x2 - xj)(r - a)/(bo - a) (15)

Xte = x3 + (x4 - x3 )(r - a)/(b° - a)

where xI, x2 , x3 , and x4 are defined in Fig. 3, and bO is the

semi-span of the fin. x 2 , x3 , and N can be related to the

leading edge sweeps Alet the trailing edge sweep Ate and the

root chord of the fin cr as

x2 x1 + (b0 - a) tanAle

(16)
X3 1 1 + Cr

S- a) tan Nte

Substituting these equations into Eqs. (15), one obtains

X1e = x1 + (r - a) tan Ate
(17)

Xte x1 + Cr + (r - a) tan Ate

Using the boundaries of the fin planform, i.e., Xle, Xte, a,

and bo, as scaling variables, then a convenient set of fin oriented

coordinates are

S=(x - Xte)/(Xje - Xte) (8

= (r - a)/(b0 - a)

where t is the chordwise variable and n is the spanwise variable

(Fig 4).

b. Nomal Force Distribution

Experimental data 1 5 -1 9 for the normal force distribution over

the surface of a number of fin planforms was studied in order

13
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to arrive at general expressions for C(t) and S(r). After devis-

ing and testing a considerable number of expressions for the

chordwise and spanwise distributions, the following equations

were adopted

C(M) = • exp[•2/Vo 7] (19a)

S + / n2(19b)

where

2Ae =2 (b -a)/S (19c)

S t (bo -a2cr/(bo - a) -tan Ae +tan At

Ae is the exposed aspect ratio, that is, the aspect ratio of

the lifting surface formed by eliminating the body and placing

the root chords of two adjacent fins together. Sf is the

planform area of a single fin. Eqs. (19a) and (19b) have

been shown to give vaiid results for exposed aspect ratios

from .5 to 5, leading edge sweep from 00 to 800, and trail-

ing edge sweep from -600 to 800°.

The normal force distribution over the surface of the

fin for uniform approach flow is then provided by the pro-

duct of Eqs. (19a) and (19b). This expression was compared

qualitatively with experimental data by means of a three-

*The pressure distributions from Eqs. (19a) and (19b) were

qualitatively compared with experimental data of Refs. 15-19.



dimensional computer graphics routine, DISSPLA. This

routine provided a means of visualizing the normal force

distribution over the surface of the fin. Shown in Figs.

5 through 9 are sets of three-dimensional perspective plots

of typical planforms examined. Figure 5 shows a sequence

of untappered fins with Ate = Ate = 600 for Ae = .5, 1, and

3. The view in the perspective plot is from behind and

above the fin surface looking upstream, and slightly in-

board. The graphics routine uses a rectangular area over

which the surface function is defined. Consequently, the

regions which show a surface value of zero are not part

of the fin planform. For example, on Fig. 5 the trail-

ing edge of the fin is located at the junction of the

nonzero and zero surface values. Another point to note

on the perspective plots is a "spike" character at the lead-

ing edge of the planform. This characteristic is not in-

herent in the equations but simply is a result of the mesh

size on the surface and the zero value of the surface just

ahead of the leading edge.

Figure 6 shows a sequence of fins with Ate = 600,

Ate = 200 for Ae = .5, 1, and 2.92. In Fig. 6 the taper

ratio decreases until in Fig. 6c an arrow wing is achieved.

Note in this sequence of figures that as the leading edge r
becomes longer the normal force loading reflects the very

high loading near the leading edge due to the increasing

strength of the leading edge vortex.

* The units on the span coordinate and the local normal force
coordinate in the figures have no physical significance.
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Figure 7 shows a rectangular planform for Ae

.5, 1., and 3. For the low aspect ratio planform

(Fig. 7a) note the increase in normal force near the tip

chord due to the tip vortex increasing in strength along

the tip chord. For the high aspect ratio planform (Fig.

7c) it can be seen that the spanwise load distribution

nears the classical elliptic loading.

Figure 8 presents the loading for Ate= 600, Ate = 0°

and Ae = .5, 1., and 2.31. Figs. 8a and 8b show clipped

deltas and Fig. 8c shows a delta planform. Comparing

the distribution for the delta planform with experimental

data 1 8 it is found that the empirical equation models the

data except near the leading edge.

Figure 9 shows a trapezoid planform with decreasing

taper ratio, Ate = -Ate = 400 and Ae = .5, I., and 2.38.

The planform with Ae = 2.38 (Fig. 8c) has a taper ratio

of zero and is, therefore, a diamond planform.

The geometric scaling factor in Eq. (14) can now be

determined. a is evaluated by the requirement that the

integrated average of the assumed normal force distribution

over the surface of the fin must be unity, i.e., the

assumed normal force loading must be normalized. Therefore,

one may write

.f fCn dA =CNf

fin

16



Substituting Cn from Eq.. (14), one has

ba Xtea ff C(xor) S(r) dx dr S1,

Transforming to the fin coordinates 4,n (Eq. 18) and

solving for a, one obtains

S f
C = 1 1

(b - a) Q(n) C() S(n) dt d I (20a)

where

() = C - (bo -a)(tan etan Ate) (20b)

and C(t) and S(n) are given by Eqs. (19).

c. Local Angle of Attack

Referring back to Eq. (14), CN depends on the local

angle of attack of the chordwise strip. The local angle

of attack is calculated by utilizing the unit normal vector

of the fin surface, n, and the total velocity V (Fig. 10).

The geometric local angle of attack can be shown to be

CL. i- [ n /( i IV1( )

The surface normal vector of the fin depends on the roll

angle 0 and the control deflection of each fin 6j,

j = 1, 2, 3, 4. Let the sign convention of the control

deflection of each fin be as follows: positive control

deflection of fins 1 and 3 produces a positive normal

force, i.e., a pitch down maneuver, and postive control

17



f deflection of fins 2 and 4 produces a positive side force,

i.e., a yaw left maneuver (see Fig. 10). The sign con-

vention for the surface normal vector, however, is such

that the vector always points in the counter-clockwise

direction. Referring to Fig. 10, the surface normal

vector is

sin(A - coS(8O ) sin 0 'j + cos (6) cos 0 (22)

where A Cos 0/ICOS 01

A simply provides the sign of 6j which is consistent with

the above mentioned sign convention.

The local total velocity, i.e., the velocity of the

fluid relative to the chordwise strip, is composed of two

types of terms; first, the fluid velocity relative to

the fixed coordinate system, and second, the velocity of

the fixed coordinate system relative to the spinning

chordwise strip. Therefore, using Eq. (1) it can be

written

V = UCD Cos c•b i + (vC + jr sin 0) j + (w - r cos 0) k (23)

where vc and wc are given by Eq. (2) and 0 is the roll

rate of the missile.

The axial location at which the flow model is evaluated

is calculated from the fin planform characteristics. The

axial location is chosen to be the average quarter chord

i8



location of the root and tip chords, That is,

Xv = (Xl + *2 5 Cr + x2 + .25ct)/2

where xv is the axial location of the vortex model and

Ct is the length of the tip chord. Rewriting this

equation, one has

xv = xI + (.25cr + .2 5 ct + (bO - a) tan Afe)/2

This axial location is used in Eqs. (9) through (12).

The geometric local angle of attack can now be cal-

culated by substituting Eqs. (22) and (23) into Eq. (21).
I'

Interference between fins, however, will alter a for

control deflection and a rolling missile. These inter-

ference erfects will be considered in Section 11-3,

Roll Moment.

d. Effective Aspect Ratio

Now consider an aerodynamic effect which occurs when

the lifting surface is attached to the missile body. If

the body is at high angle of attack then the angle in the

plane of the fin between the approach flow and the fin

leading edge can vary significantly, depending on the roll

angle of the body. That is, the fin is yawed with res-

pect to the approach flow for various roll angles around

the body. This yaw angle results in an effective change

in the leading and trailing edge sweep and effective

aspect ratio of the fin. A simple example of this is

to consider fin 4 at a roll angle of 00 with the body at

19



angle of attack ab (see Fig. 10). Then the effective

leading edge sweep of fin 4 at 0 = 00 is approximately

Ate - abe If A1 e 00, then the fin at this roll

angle would actually be swept forward.

The effective leading edge sweep, Afe' and effective

trailing edge sweep, Ate' are derived by relating the

average flow velocity along the fin to the leading and

trailing edge unit vectors, respectively. The most

convenient coordinate system to use is cylindrical

:1 coordinates with the orthogonal unit vectors located in

the plane of the fin (see Fig. 11). Let Vc and Wc be

the average crossflow velocity components along the exposed

semispan of the fin at a given roll angle. Then

b
0

V r,mi.0 dr

a

b•- 0

ww( = bdr a
a

where vc and wc are given by Eqs. (2). Rewriting these

equations in terms of fin oriented coordinates, one has

I (24a)

c = • , 0) dn

20



(24b)

0

Using the cylindrical coordinate unit vectors -e-F e-t

shown in Fig. 11, the average velocity along the leading

edge is

V ex r er

where

u Tcos %t

r =V cos O+; sin 0

As the sweep angle is measured from a line perpendicular

to the approach velocity, the unit vector perpendicular

to the average velocity is

2+;2 + 2+i 2
I r//u2 r x r er (5

The leading edge unit vector is

ee = sin Ate ex + cos Ate er (26)

The effective leading edge sweep angle is the angle

between VjL and •e* Using the scalar product, one obtains

Ate =Q Co Ae)

Substituting in Eqs. (25) and (26),

Ate = Cos'lru cos A - r sin A e)/ 2u +2j (27)
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This expression presents difficulties in evaluation because

the arc cosine function is double valued. This problem can

be nicely circumvented by noticing that the argument of

the arc cosine function suggests le might be split into

two angles* Let

AAe = Ate + CLe (28)

where eie is the deviation of the effective leading edge

sweep from the geometric leading edge sweep. Now Eqo (27)

can be written as

cos (Ate + Ce) Cos Ate - sin Ate
Ja2 +;2-f2 -2

r r

Using the trigonometric identity for the cosine of a sum,

one has
"CosA sine A =si A A sinA

co2 e e 2+ -2 e 2+ ; 2

r r

Matching terms one notes that two mathematically equivalent

expressions can be written for Cie" The one involving the

cosine function, however, suffers from the same difficulty

mentioned above. Therefore, use

sin c = /ý2 -+!
te r r

Substituting this into Eq. (28), one finally obtains

Ale Ate + sin 0r (29a)
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Using exactly the same procedure, the effective

trailing edge sweeps is

A

Ate = Ate " sin + (29b)

The effective leading and trailing edge sweep due to

'high angle of attack results in an effective aspect

ratio of the fin. This is significant in that the local

normal force coefficient due to angle of attack, CN (ap),

will now reflect effective changes in fin geometry due to

apparent yaw of the fin. To derive an expression for Ae"

begin with the definition of Ae:

Ae = 2(bO - a) 2/Sf

where Sf is the exposed planform area of a fin. Writing

this in terms of fin semispan, root chord, and leading

and trailing edge sweep, one has

Ae = [2r/(bo - a)- tan Al + tan Atn(
At](30)

Referring to Fig. 12, it can be seen that the exposed

fin semispan and root chord also effectively change.

It can be shown that

bo a (b 0 a) cos Ae/Cos P(e (31a)

o (-eCO AICeSAte

A

Cr Cr cOs Ate/COS(Al -Ate +At) (31b)
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Using Eqs. (30) and (31), the effective aspect ratio is

written as

A 4
Ae 2 c r cos Ate cos Ate

A A tan Ate
(bO - a) cos Ate cos(Ale - Ate + Ate) Ate (32)

e. Expression for CN (ai)

The functional dependence of CN on the local angle of at-

tack is given by an empirical expression based on lifting

surfaces in uniform approach flow. Other investigators

(see, for example, Ref. 6) have used experimental data for

CN(c€) directly in their analysis. This is rarely an

appealing approach because it requires vast amounts of

data to construct a data base sufficiently general to address

general planforms over a large range of Mach numbers. Also,

this is not possible in the present approach because the

effective geometry of the fin, discussed earlier, changes

with the character of the nonuniform approach flow.

As the local angle of attack on a missile fin can be

on the order of 400 to 500 when the angle of attack of the

body is 250, the expression for CN(cif) must include pre-

stall, stall and post-stall characteristics. The pre-stall

expression for CN(al) is taken from the work of Lecat and

Rietschlin. 2 0  Their analysis is based on Polhamus 2 1 suc-

tion analogy. They have extended the original work of

Polhamus on delta wings to include arbitrary planforms
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and transonic flow. Their analysis is not repeated here,

but simply their equations are given in the present no-

menclature.

Their expression for CN(a) is

CN() =K sin a cos m + Kv sin2 a (33)

tNote that this equation shows CN continually increasing

withctand, as a result, is not appropriate for angles

near or greater than the stall angle. Although Lecat and

Reitschlin state their method is applicable to subsonic

and supersonic flow, the present analysis is considered

appropriate for subsonic flow and only supersonic flow with

subsonic leading edges.

The calculation procedure for Kp and Kb is as follows:

(1) Calculate bO - a, cr, and Re from Eqs. (31)

and (32)

(2) Calculate the distance from x, to the aftmost

point of maximum span, cr.

c r=Cr + (b )tan Ate
(ore(34a)

(3) Calculate the sweep of the semispan diagonal, 7.

Y = tan'/(bo -a) + tan te1  (34b)

(4) Calculate the rati, of planform area to rec-

tangular reference area, Sf/Sf*.

yS- (34c)



(5) If MW > 1, calculate the complement of the

Mach angle, VM.

M co'(iD (34d)

(6) Calculate the planform parameter p*.

S S f for M. 5

p -(304e)

II;for M >1I
1 [tan yM/(2 tan y)]

(7) Calculate the planform angle 0.

S tan1 1(2p* tan y) M ~D =(34f)

tanl1[2p* (tan y - tan yMI M,'> 1

(8) Calculate the compressiblity factor 3.

{1 [ M2 o (34g)

for M > 1

(9) Calculate the potential flow lift coefficient, Kp.

Stan + Vtan2 + (sin2*/p * + (34h)
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(10) Calculate the vortex flow lift coefficient, Kv.

rKv K - (K2 tan 4r/4iT1 /I +tn2t;
(34i)

An empirical expression was devised for the normal force

coefficient CN(ac) based on the expression of Lecat and

Rietschlin, Eq. (33). The new expression is more general in

the sense that it applies at stall and beyond stall. This

expression was constructed after examining and comparingAi a large number of trial expressions with experimental

dataI 0 , 1 5 - 2 3 for a wide variety of planforms. This expression

is

(K sin a. cos a + K sin 2a,)4[ 1 - (l-p)(a,/a.)3j 0 r a, : a

C(a.) A f<A e.A >ý CNa? I> [A eccs At C-i /10 a <a :r (3a )

f<eAte CIs +[AeCSt CNs>] /10 2a% < O.,

where the symbol < > is used to denote functional dependence in

situations where the standard symbol ( ) would be confusing. Also

= .9 - .2 Ae sin 2Ale

as 38[9 + C2(Ae - 2)4]J1l + 1.1 (A 12.5 2Ale] X

2 241 A e+1]2(Ae-1)1i + [6(Ae -1) sin AteJ/e e /[cos Ate + (35b)
1

f(AA1 )=-A5+ e A ef(A e, )Ate .35 1+ e sin A• e sin (A - 2.1-) Al

[1 + .5(Ae- 1)31 (350)

and Kp and Kv are given by Eqs. (33).
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As can be seen, CN(a•) is composed of three angle of attack

ranges: zero angle up to the stall angle, stall up to twice the

stall angle, and angles larger than twice the stall angle. For

the first range, angles less than as, the expression of Lecat and

Reitschlin 2 0 , Eq. (33), has been modified for a, near as.Eq. (35a)

for aI < as shows that as a, approaches as the normal force

coefficient increases more slowly. This characteristic is

consistent with experimental measurements. The parameterp

represents the portion of CN predicted by Lecat and Reitschlin

which remains at a1 = as. The expression for as, although

rather lengthy, gives a good estimate of the stall angle

(in degrees) for planforms with aspect ratios from 1 to 5 and

leading edge sweep from 00 to 700. f(Ae, Ate) represents

the portion of CN( s) existing for a = u•. Note that p,

as and f(Ae, Ale) show no dependence on freestream Mach

number. This is not necessarily a reflection of the

physics, but simply an admission of lack of data.

CN(al) as predicted by Eq. (35) was compared with data

for a very wide variety of planform geometries in order to

determine its range of applicability. Figures 13 through

22 show typical comparisons of Eq. (35) with experimental

data for incompressible flow. The figures are placed in

order of increasing aspect ratio from 1 to 4. The leading

edge sweep angle varies from 00 to 700 and planform geo-

metries include: rectangular, diamond, clipped delta,

delta, arrow, clipped arrow, and trapezoidal. The com-

parisons are good for all planforms except that for the
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v aspect ratio 3 trapezoid (Fig. 21) and rectangular plan-

forms of Ae ? 3 (comparisons not shown). For these type

planforms, i.e., high aspect ratio with small leading

edge sweep, the normal force past stall is significantly

over estimated with the present expression.

f. Fin - Fin Interference

Two types of fin - fin interference are included in

the present lifting theory. The first type is that due

to control deflection of the fins and the second type
is due to rolling motion of the missile. When a control

deflection is input to a fin the lifting flow field of

that fin induces an angle of attack on the adjacent fins.

This induced angle of attack causes the adjacent fins to

generate forces and moments dependent on the magnitude

and direction of the control input. Rolling motion in-

terference occurs for a similar reason except that the

angle of attack of a fin is generated by the angular

velocity of the fin relative to the oncoming stream. Control

deflection interference will be considered first and then

rolling motion interference will be analyzed. Results of

slender body theory are used to evaluate both types of

interference considered here.

Figure 23 (taken from Ref. 24) shows the interference

flow fields and pressures induced on adjacent fins for

two types of control input: positive pitch control and

positive roll control with horizontal fins. For the pitch

control it is seen that a negative pressure coefficient
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is produced on both zides of the top fin and a positive

pressure coefficient is generated on both sides of the

bottom fin. For roll control, i.e., differential deflection,

a negative pressure is generated on the top right and

bottom left sides of the fins and a positive pressure

is generated on the top left and bottom right sides

of the fin. In the present analysis these induced pressures

are included by considering the adjacent fins to be at an

effective deflection angle.

Consider the induced pressures on adjacent fins for in-

dividual deflection of each fin. Shown in Fig. 24 is the

induced pressure and effective deflection force for positive

deflection of each fin. If we let Id be the deflection in-

terference coefficient, then the following equations describe

the interference depicted in Fig. 24.

6e2 = Id 61 8eI d 62

61> 0 6e3 = 0 62 > 0 6 e3 = -Id 62

6e4 = -Id 6 1 6e4 0

(36)

6e 1e1 -d 64

6 > 0 = -I 6 6 > 0 6 0
3e 2 d 3 64> e 2

e d 63 e Id 64'd 63 3
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Summing all of the effective control deflections given in Eqs.

(36) and including the actual control deflection, one obtains

e1 = 6 1 + Id(62 - 64)

6e2 = 62 + Id(61 - 63)

6e3 = 63 + Id(64 - 62)

6e4 = 64 + Id(6 3 - 61)

Id is evaluated by using the slender body theory results

of Adams and Dugan. 2 5 They derived results for the roll moment

coefficient derivative, C16, versus a/bo for differential de-

flection of two fins. They further showed results for the roll

moment coefficient induced on the vertical fins due to differ-

ential deflection of the horizontal fins. Assuming the induced

angle of attack of the upwash and downwash of the deflected

fin on the undeflected fin is constant along the span, then one

can write

[C•l induced 6 e

] 6deflected(3
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This equation can be proven, given the stated assumption,I- by writing the roll moment of the induced and deflected

fin in double integral form. Noting that the ratio shown

in Eq. (38) is for differential deflection of two fins,

one has

1 [Cr16 inducedId = 2 (9

deflected 
(39)

Figure 25 plots Id versus a/bO using the results of

Adams and Dugan for [C1 6]i d and [C d e

It should be noted that they use the planform aspect ratio

of the fins, Ap. In the present nomenclature

AP = (40a)
p

where Sf is the planform area of two fins including theirp
imaginary extension through the body. It can be shown that

2 a[2Lc + a(tanAl -tan Ate) (40b)

Id, as given in Fig. 25, is used in Eqs. (37) to calculate

the effective control deflection of each fin.

Now consider the case of fin - fin interference due to

rolling motion. The strategy of this derivation is to de-

termine the interference coefficient by matching the present

roll moment formulation for zero angle of attack of the body

to that obtained by slender body theory. Assuming ab = 0
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I and the rolling speed is 0, then the differential roll

moment can be written (Fig. 26)

di= r Cn pI + (r)] dx dr

Assuming the rolling speed is small compared to U and

substituting in Cn from Eq. (14), one has

(41a)
dA = c . r a CN(%) C(x, r) S(r) dx dr

where ae is the effective local angle of attack along the

span. Adams and Dugan 2 5 showed that the spanwise loading in-

duced on one fin by the other fins was roughly guadratic along

the span. In the present analysis this induced loading will

be simply approximated by a linear spanwise function. There-

fore,

CL or + Ior
e U UO (41b)

where Ip is the rolling motion interference coefficient.

The first term in Eq. (41b) is the local angle of attack due

to rolling speed and the second term is the reduction in

local angle of attack due to fin - fin interference.

Integrating over the surface of the fin, Eq. (41a)

becomes

b 0 Xte

z= 4 a q, fi r CN(Oe) C(x, r) S(r) dr dx (42)

Assuming ae is small and using Eq. (41b), Eq. (42) can be

written
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b0 Xte

=-4 CU ( I fI r 2 C(x, r) S(r) dx dr
a le

Transforming coordinates (x,r) to fin coordinates (4,n) and non-

dimensionalizing with respect to q•Sbd, one obtains

1 1

2 (-)0bo 2C IT=•a CJ (TI) 0(n) C(g) S(rj) de d (4
La r N ab 0 iI 000 j~ (43a)

where

= a + (b° -a) '1 (43b)

Taking the partial derivative of Eq. (43) with respect to

p, where p =bo/U, and solving for Ip, one finally obtains

I 1+
P 2 (b0 -a) C 0) (,)nn)c(t) s(.n) q dT

0 0(44)

Cjp is computed from the results of Adams and Dugan (see

Fig. 27). CNO is obtained by numerically differencing Eq. (35)

for af 0.

3. ROLL MOMENT

The above described body flow field and lifting theory

will now be applied to the prediction of the roll moment pro-

duced by cruciform fins. If one desired, the present analysis

could be applied in a straightforward manner to two or three

fin configurations. Consider the missile at angle of attack
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tb' roll angle 0, and roll rate 0. The roll moment produced

by a differential surface element on each of the four fins

is
isd , r 4r n (U /U')2 dx dr

where j refers to the j'th fin and Uj is the magnitude of the

velocity on the j'th fin. Substituting Cn from Eq. (14)

and integrating over the fin surfaces, one has

bx
o te 4

I = a 0, f r C(x, r) S(r) 'l CN1 (Uj-IU CD x cr
a x1 j=1 jxLe

Transforming to fin coordinates (ý,n) and nondimensionalizing

by q•Sbd, one obtains the roll moment coefficient

c_ (b° -a)4 2 !(45)
- 2 3  /-f (T0) 0(r) c(F) s(O) _ CN (ujlu .) d9 di4

where,(n) is given by Eq. (43b), p(r) is given by Eq.

(20b), C(ý) is given by Eq. (19a), and S(n) is given by

Eq. (19b).

Uj is found by taking the magnitude of the local

velocity given in Eq. (23):

(46)

Note that if 0 appears without the subscript j, as in the

above equation, then the angle 0 is measured from the y axis

for the particular fin under consideration.
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CNj depends upon the local effective angle of attack

a-ej" To determine this angle the effective surface normal

vector must be found taking into account control deflection

and rolling motion interference. Using -'f, from Eq. (22),

the effective fin deflection angle 6e., from Eq. (37), and

noting that the rolling motion interference affects the i

component of the normal vector, one can write*

nej in + r - cos esin + Cos(ej) cos 0

Substituting -no and - into the equation for a,, Eq. (21), one

obtains the local effective angle of attack.

(e co COb %5 [i(Aej) + I~ r/ (47)

-V (v + r s~in o) Cos (6 ) sin 0

+ (wCj r cos 11 (os8eJ) Co 0/n ej U J)]

where

Ine =1+ 2 sin (A e J) ½ O/U + (I~ 0 Y)

!.Ref. 10 accounted for rolling motion interference by way of
j and k components of the velocity. That approach is not
considered correct because it also changes the magnitude of the
velocity. In fin - fin interference the magnitude of the approach
velocity to the fin is not changed, but only the angle which it
approaches the fin.
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4.- NORMAL FORCE AND PITCX MOMENP'

The equations for the normal force and pitch moment produced

by the fins will now be considered. The differential fin force

in the z direction produced by the four fins is (see Fig, 28)*

dz = dX1 cos 6 1 cos 0I - dN2 cos 62 sin 02

- dN3 cos 63 cos 03 1 dN4 cos 64 sin 04

Writing the right side of this equation as a summation and

substituting dNj from Eq. (13), one obtains

dF (U/C C 2Cos 6 cos 0dx dr
F =1 noo %Io0

Substituting in Cn from Eq. (14) and integrating over the sur-

face of each fin, one has

1ý = a q 1 t C(x, r) c')FN (u/%u.) 2 Cos cos 0 dx dr

a x le

Transforming to fin coordinates (t,7) and nondimensionalizing

by qoSb, one obtains the normal force coefficient due to the

fins:

a (b (0 4.)
cz T f f0() C(9) s(,)r CN cos6 cos 0 dgcW (48)

0o 0

*Note that the sign-of dN. is determined by its angular
relationship to the surfage normal vector, that is, positive
dNj is in the counter-clockwise sense.
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The pitch moment produced by the fins is composed of

two types of terms; the first term is due to the normal force

just derived and the second term is due to the sin 6i compo-

nent of the normal force on the fins (Fig. 28). The second

term produces a pure moment, i.e., a couple, on the missile

body and is usually much smaller in magnitude than the first

term. The differential pitch moment due to both terms from

all four fins is

d,, = - x dN1 cos 61 cos I + r dN1 sin(A 81) sin 01

+ x dN2 Cos 62 sin 2 + r dN2 sin(A 82) cos 02

+ x dN3 cos 63 cos 8 3 " r dN3 sin(A 63 sin 03

-X dN4 cos 64 sin 04 -rdN sin(a 84) cos 04

Writing the right side of this equation as a summation and

substituting dNj from Eq. (13), one obtains

141

di = -U /U c2 (j jx C086 cos0- r sin(A6 8) sin'dx dr

Substituting in Cn from Eq. (14) and integrating over the sur-
face of each fin, one has

b0 Xte 4

.4t C(x, r) S(r) FCN (Uj/u) lx cos 6Jcos 0

- r sin(, 6 ) sin 0 dx dr

Transforming to fin coordinates (t,n) and nondimensionalizing

by qoSbd, one obtains the pitch moment coefficient due to the

fins:
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-o(bo 
4a"cot ° )ff3 05 CWSM N(jUDCm= '()ce) ')• (Iu2,(,•

2 r a l (49)
0 0

COs 6B cos 0 - ?(rl) sin(A 6b) sin 01 dý d,

where

,) = XI + C + (bo - a) tan Ate n-r(r)
r (4 9b)

5. SIDE FORCE AND YAW MOMENT

The derivation of the side force and yaw moment is very

similar to that of the normal force and pitch moment and,

consequently, will not be given. The side force coefficient

and the yaw moment coefficient are given by:
1 1

-C(bo. a) f f 4
y = a 2 f f I(n•)CM s(•) • c (u 4lU) cos 6 sin 0 dý d-n (50)

0 0 J=0

and

-a (b - a (u/4) -

2rTa 3  JJ J=1cN •

0 0

COS 6 sin 0 + W(r) sin (A6•C os d (51)

6. PANEL LOADS

The panel loads on the fin surfaces are essentially the

same forces and moments derived previously (Sections 11-3,

11-4, and 11-5), except that they are oriented in a fin coor-

dinate system. Figure 29 shows the coordinate system and

sign convention for the panel normal force N, the panel hinge
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moment H, and the panel root bending moment B. The calcula-

tion of panel loads is useful for two reasons. First, they

provide the most physically meaningful force and moments

with which to compare theoretical predictions and experiment

because they do not contain the geometry components of the

roll angle and the fin deflection angle. Second, they

directly provide the loads needed by the structural designer

and the actuator torques needed by the guidance and control

designer.

As the derivation of the panel loads is very similar

to the previous derivations, the derivation will only be

sketched very briefly. Using Eq. (13), the normal force on

a fin panel due to a differential surface element is

S:%2
dN q. C(U/U dx dr

Proceeding as before, one obtains the panel normal force co-

efficient, N/q Sf;

f fa) J n~) C(•) s(rn) cn (u/u.)2 d• dr1  ($2)

00

Recall that positive normal force points in the direction

of the counterclockwise rotational sense.

'I The panel hinge moment due to a differential surface

element is
dH = (x-j )c(1)n (U/ud)

where xh is the axial location of the reference line for the

hinge moment. Proceeding as before, one obtains the panel

hinge moment coefficient, H/qeCrSf;

4o



Chs�'•'"a) c() s() cN (u/u)2 d53)

0 h = Cr S c dF d (

The panel root bending moment due to a differential sur-

face element is

dB = gq, (r-a) Cn (U/U%)2 dx dr

Proceeding as before, one obtains the panel root bending moment

coefficient, B/q,(b 0 - a)Sf;

110= af n Q C(F) S(T) CN (u/%)2 W dn (54)

00 (54)o
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SECTION III

RESULTS AND DISCUSSION

The results computed and presented in this investigation

were dictated solely by the requirement to validate and

determine the bounds of the present theory. Consequently,

no restilts will be given without experimental measurements.

The theory is evaluated by comparing predictions and measurements

for six different fin planforms. The detailed geometry and

reference are given in Table 1 and the planforms are shown

Fig. 30. It can be seen that the aspect ratios range from

1.0 to 2.0 and the leading edge sweep angles range from

00 to 67.40.

The results and comparison with experiment will be dis-

cussed in three sections: panel loads, roll moments, and

control forces and moments. The panel loads to be presented

are panel normal force, panel bending moment, and panel

hinge moment. Normal force, pitch moment, side force, and

yaw moment predictions could have been compared with experimental

measurements but it is felt that the individual panel loads

permit more physical insight into the aerodynamic generation

of the forces and moments. Roll moment characteristics pre-

sented are the induced roll moment, roll damping moment,

and steady state roll rate. These roll characteristics are

of great importance in dynamic flight stability of finned

missiles. Control deflection forces and moments to be pre-

sented are pitch (or yaw) control and roll control for

various control deflections and roll angles.
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1. PANEL LOADS

a. Panel Normal Force

The panel normal force on the windward fin, fin 4, as

a function of roll angle for ab = 200 for configuration A

at Mo = .8 is shown in Fig. 31. Also shown in Fig. 31 is

the prediction of Nielsen, Hemsch and Smith. 7 As fin 4

sweeps from 0 = 00 to 90* it moves on the windward side of

the body from the angle of attack plane to the x - y plane.

As can be seen by comparing the present result with experi-

ment, the present method predicts very accurately the load-

up of the fin. Above 0 = 600 the present method predicts

an increasing normal force, whereas experiment shows a

slight drop in normal force. Examining the computer out-

put for spanwise angle of attack and loading it is seen that

as 0 increases from zero the loading increases due to increase

in local angle of attack across the span. At 0 = 400 the body

upwash near the fin root has increased to the extent that the

root chord stalls. As the roll angle increases further the

stall location moves outboard, but the inboard sections

begin to add lift as they progress further into post stall.

Noting the experimental trend for 0 > 400 and the rise in

normal force near 0 = 800 suggests the following explanation

of the actual fin loading. The root chord stall is washed

outboard due to the spanwise velocity component of the lead-

ing edge vortex. This, in turn, decreases the loading

-A-panel loads calculated and compared with experimental data
are for missile configuration A.

143



along the span such that the total loading decreases. But as

the roll angle increases further and the spanwise location of

stall moves outboard, the portion of unstalled span which could

be affected steadily decreases. At 0 = 900 it is seen from

the present computer results that stall occurs at the very

tip of the fin, that is, the entire fin is in post-stall. Once

this occurs the fin loading will then begin to increase again

as the angle of attack increases. This hypothesis could be

tested quantitatively by examining experimental spanwise

pressure distributions on a fin. Qualitatively it could be

tested by comparing predictions of the present method with

experimental data for unswept fins and noting that this

phenomenon probably would not occur for unswept geometries.

The panel normal force on the windward fin versus roll

angle for ab = 200 at M = 1.22 is shown in Fig. 32. Good

agreement between the present method and experiment is de-

monstrated in the figure. The trend in panel normal force

for 0 < 500 is the same for supersonic flow as for the previous

subsonic case. For 0 > 500, however, the experimental data

shows that stall is delayed to a higher roll angle, i.e., angle

of attack, as compared to M,, .8. Figure 32 shows the experi-

mental data still dropping at 0 = 900 which implies, from the

previous discussion, that the stall angle of attack has not

reached the trip chord. As the present method does not have

any dependence of stall angle of attack on Mach number,

Eq. (35), this characteristic is not demonstrated by theory.
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The panel normal force on the leeward fin versus roll

angle for ab = 200 at M. = .8 is given in Fig. 33. Very

good comparison between theory and experiment is demonstra-

ted except near 0 = 00. As fin 1 rolls from • = 00 it

begins to unlodad not only due to closer proximity to the

angle of attack plane, but also immersion in the body vor-

tex. The inboard portion of the fin unloads much more

rapidly than the outboard portion because it is strongly

influenced by the vortex feeding sheet. As the fin nears

the center of the body vortex it produces essentially no

net normal force. The portion inboard of the vortex pro-

duces negative force, i.e., in the negative roll moment

direction, and the outboard portion produces an almost

balancing positive force. This balance is highly depen-

dent on the relation between the radial vortex location

and the fin semispan. For example, if the fin had a smaller

semispan then the zero load roll angle would be less than

that shown in Fig. 33.

Figure 34 shows the same type of comparison as Fig. 33,

except for M. = 1.22. The agreement between theory and ex-

periment is not as good as in the previous comparisons.

Note that the experimental roll angle for zero cross-over

loading decreased from 0 = 750 for M, = .8 to 0 600 for

MC = 1.22. This could be caused by either, or both, the

body vortex becoming stronger or the radial location of the

vortex increasing. Recalling that the radial location of the

vortex increases with Mach number, Eq. (11), one could infer
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that vortex strength increases significantly with Mach

number. This has been suggested by Nielsen in Ref. 26.

b. Panel Bending Moment

Figures 35 and 36 show the panel bending moment for the

windward fin versus roll angle for ab = 200 at M, = .8 and

1.22, respectively. Generally good agreement is demonstrated

between theory and experiment. Good agreement between theory

and experiment on the bending moment requires that both the

magnitude of the total normal force, Cp4, and spanwise pres-

sure distribution be correct. Recall that the theory for

panel normal force is in essentially perfect agreement with

experiment (Figs. 31 and 32) for 0 < 400. Figures 35 and 36,

however, show that the theory slightly underpredicts the

bending moment for the same roll angle range. This implies

that there is slightly more loading outboard and slightly

less loading inboard than predicted by the present method.

If bending moment data for other planforms indicated the

same trend, then the spanwise normal force distribution,

S(n) given by Eq. (19b), could be modified slightly.

The root bending moment for the leeward fin versus roll

angle for ab = 200 at M, = .8 and 1.22 is shown in Figs. 37

and 38, respectively. Excellent agreement between theory and

experiment is demonstrated for the subsonic case and fair

agreement is shown for the supersonic case. It is interesting

to note that for M. = .8 near 0 = 800 the panel normal force

is negative (Fig. 33) while the bending moment remains near zero

(Fig. 37) . The reason for this is that the reverse flow under



the vortex is strong enough to generate a net negative panel

force, but the bending moment produced by the outboard positive

normal force overcomes the negative bending moment produced by

the inboard sections.

c. Panel Hinge Moment

The panel hinge moment for the windward fin versus roll

angle for ab = 2C° at M. = .8 and 1.22 is shown in Figs. 39

and 40, respectively. The agreement between theory and ex-

periment appears to be poor, particularly for M. = 1.22. One

must be cautioned, however, as to the sensitivity of the hinge

moment to the location of the hinge line. A better indication

of accuracy of the present method is obtained by a sample com-

parison of the theoretical and experimental axial location of

the center of pressure of the fin. Using the hinge line, xh,

as the moment reference, one can write

Xcp Cp q, Sf -H

Solving for the location of the center of pressure nondimen-

sionalized by the root chord, one has

CP/C r - hCh/Cp (55)

Applying this equation to both the experimental and theoretical

data at o = 900 for fin 4, one has

o87 = .213 = .023
reXPr theory

for M = 1.22 (S) = .129 ("a = o24
(' exp theory=
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As can be seen by this calculation the experimental center of

pressure is slightly farther aft of the hinge line than predicted

by the theory. Taking the difference between each pair of ratios

one sees that for the worst agreement between theory and experi-

ment in Figs. 39 and 40, the predicted axial center of pressure

is in error only 9.0% and 10.5% of the root chord for M., .8

and 1.22, respectively.

A second point should be made from the axial center of pres-

sure calculation just presented. Note that the experimental data

shows that the center of pressure moves slightly reward as the

Mach number changes from subsonic to supersonic. This follows

the usual trend of lifting surfaces in transonic flow. The pre-

dicted center of pressure, however, stays essentially constant

with Mach number. The reason for this is that the assumed nor-

mal force distribution for uniform approach flow, Eqs. (19), do

not depend upon Mach number. A slight improvement to the pre-

sent theory would be to insert Mach number dependence in the

chordwise distribution function, C(4).

Figures 41 and 42 give the hinge moment for the leeward

fin versus roll angle for a b = 200 at M. = .8 and 1.22,

respectively. Better agreement between theory and experiment is

shown for the leeward fin than for the windward fin. This might

be somewhat surprising because of the complexity of predicting fin

loading for such a nonuniform approach flow. The reason, however,

is that for 0 > 500 the panel normal force is small for the lee-

ward fin so that the hinge moment is also small.



2. ROLL MOMENTS

a. Induced Roll Moment

Figures 43 and 44 show the induced roll moment versus angle

of attack of the body for missile configuration A for 0 = 200

at M = .8 and M. = 1.22, respectively. Also shown in the figures

is the prediction of Nielsen, Hemsch and Smith. 7 Fairly good

agreement is observed between the present method and experiment

for M. .8, but for M%= 1.22 the agreement is poor. It should

be noted that the induced roll moment is one of the most difficult

nonlinear moments to predict as it is composed of the sum and

difference of the first moment of four spanwise pressure distri-

butions. The physical explanation of the slightly negative

then rapidly increasing positive trend of the induced roll

moment with angle of attack is very difficult to delineate

because of the many complex aerodynamic phenomena embedded

in the present theory. From numerical experiments with the

theory, however, certain important elements can be identified.

These are: radial location of the body vortex, size of the

vortex core, and local stall and post-stall along the span

of the fin.

To understand the trends plotted in Figs. 43 and 44 one

must examine the spanwise loading of all the fins. Figure

45 shows the spanwise loading for each fin for M, = .8.

The loading at a given spanwise location shown in Fig. 45 is

the integrated value over the local chord. The loading caused

by the primary body vortex is clearly seen on fin 2. The

spanwise location of the stall angle of attack can bei4



recognized as a slight drop in the normal force along fin

3. Tne loading on fins 1, 3, and 4 increases steadily

as the root chord is approached due to body opwash and the

increasing length of the chord. On fin 1 the loading drops

sharply near the root chord because it passes inside the

vortex feeding sheet. The roll moment produced by each

fin loading shown is: fin 1, 0.794, fin 2, -0.031, fin 3,

"-0.751, and fin 4, 0.313. It can be seen that thý roll

moments produced by fin 1 and fin 3 roughly balance. Fin 2 and

fin 4, however, do not balance because the reverse flow loading

between the primary body vortex and the root chord on fin 2

drop (in magnitude) the roll moment on fin 2 to roughly zero.

This results in a large net positive roll moment from fin 4.

By similar reasoning, the small negative induced roll moment

for small angles of attack is due to the increased outboard

loading on fin 2 when the vortex is near the body surface.

Figure 46 gives the induced roll moment versus angle of

attack for configuration B for 4 = 22.50 and M = .7. Theory

and experiment are in very good agreement for the rectancular

fin planform. Comparing the induced roll moment coefficient

for the clipped delta and rectangular planform (Figs. 43 and

46) for ab = 200 it is seen that CI = .325 and .186,

respectively. Recalling the previous explanation given concern-

ing the origin of the large positive induced roll moment, one

could ask why C1 for the shorter span rectangular planform is

This comparison ignores the fact that the roll angle and
Mach number are not exactly the same.
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not larger than that for the clipped delta. The reason for the

question would be that the reverse flow loading on fin 2 for the

short span fin should produce a relatively larger positive roll

moment than the clipped delta. The reasoning is correct; the

paradox, however, is created by the nondimensionalization used in

the present analysis and in almost all other analyses. The

roll moment coefficient is based on the body cross-sectional

area, not on the fin planform area. If one converts the two

previous coefficients to coefficients based on fin planform

area, one has [C1]S = .347 and .487, respectively. Now it

is clear that the short span rectangular planform is much

more efficient at producing an induced roll moment than the

longer span clipped delta.

The induced roll moment versus angle of attack for con-

figuration D for 0 = 22.50 and M, = .7 and 1.2 is shown in

Fig. 47. The theory reproduces the experimental data fairly

well, but the change in induced roll moment with Mach num-

ber is not predicted accurately for this planform geometry.

The reason is probably the effect of Mach number on the

spanwise and chordwise pressure distribution S(n) and

C(t), as mentioned earlier. Concerning the magnitude of

the induced roll moment coefficient, a direct comparison

can be made between the rectangular planform (Fig. 46)

and the delta planform (Fig. 47) because they both have

the same missile body and planform area. The delta planform

produces a slightly smaller induced roll moment because
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of the greatly different spanwise loading and stall angle

of attack (compare, for example, Figs. 17 and 19).

b. Roll Damping Momcnt

Figure 48 shows the roll damping moment versus angle of

attack for configuration E for M.0 = .22. For angles of at-

tack up to 120 here is excellent agreement between theory and

experiment, but above that the theory agrees well with one set

of experimental data and not the other. The only comment that

can be made is that the experimental technique is greatly

different between the two investigators. Clare 31 used a roll92

oscillation technique and Regan29 used the standard rolling

speed decay method.

A comment should be made concerning the present numerical

method of calculating derivatives such as C . As the missile
IP

fins rotate through a 900 roll cycle, while at nonzero angle of

attack of the body, the forces and moments continually change.

Therefore, one method of computing rolling motion derivatives is

to numerically difference the average value of the force or mo-

ment coefficient over a roll cycle. That is

o - (56)

where Cj represents any force or moment coefficient. This

computation of Cip is appropriate for large values of rolling

speed. The method described by Eq. (56) is one used in the

present analysis. It should be mentioned, however, that
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another method could be used. This method computes the

difference between two values of the coefficient at different

rolling speeds, but at the same roll angle. That is,

- C. /6t P
cPI = 0=0 I =1] (57)
1= I p= p Ip=o

This method should be used for very low rolling speeds, such

as roll oscillations about a roll trim angle. This method

would yield, for example, the roll angle variation of the

roll damping moment while a missile is oscillating in roll

lock-in.

Figure 49 gives the roll damping moment versus angle of

attack for configuration F for M.0 =.6 and 1.3. Although the

slight drop in C2 p near ab = 170 is not predicted, the agreement

between theory and experiment is generally good over the angle

of attack range. Comparing Figs. 48 and 49, it is seen that

the trend of C1p with ab is very different between the two plan-

forms. One might suspect, based on the earlier discussion of

induced roll moment, that this different character would be

due primarily to the difference in semi-span between the two

configurations. The roll damping moment for several fin

planforms and semispans was computed in order to identify

the dominant parameter causing the rapid decrease in C p for

tb near 200. It was found to be the stall angle of attack of

the planform, and not fin span. For example, consider the

case of holding the planform and span constant, say a rectan-

gular planform of a given span, and varying the aspect ratio
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so that the stall angle of attack varies. One finds that as

the aspect ratio decreases (and the stall angle of attack

increases) the drop in CI at large angle of attack disappears.p
c. Steady State Rolling Speed

The steady state roll rate of a missile whose fins are

canted is calculated in a manner similar to Ce The steadyp"

state roll rate is defined as the rolling speed at which the

roll driving moment balances with the roll damping moment.

Therefore, the nondimensional steady state roll rate, pss, is

the roll rate such that

T0
0=PSS

Only one comparison of theory and experiment is made for

steady state rolling speed because of the lack of data for other

planforms. Figure 50 shows the steady state rolling speed vs

angle of attack for configuration E for a fin cant of 40

(differential fin deflection) and M. = .23. The theory slightly

overpredicts pss for angles of attack less than 120, but for

ab > 120 the theory agrees perfectly with one set of data

and underpredicts pss for the other set. The reason the

theory predicts roll slowdown is rather difficult to determine.

From numerical experiments with the present method it was found

that roll slowdown was predicted for each of the planforms

shown in Fig. 30. One qualitative comment that can be made,

however, is that even though the roll damping moment decreases
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at large angle of attack (Fig. 48), the roll driving moment,

i.e., fin cant, decreases at a faster rate on every planform

investigated.

3. CONTROL DEFLECTIONS

a. Pitch (or Yaw) Control

Pitch control force coefficient is defined to be the

normal force coefficient of the entire missile configuration

(body plus fins) with the fins deflected minLus the normal force

coefficient of the entire missile without the fins deflected.

That is,

=[cs] -[cz]AC z z B+f] 8j• ý0 C +f] 8j=0

Using slender body theory notation, one can write

SCz + - [Zf(B)]50 (55)

The second and fourth terms are computed in the present

analysis, but the first and third are not. The first term

can be segregated into two terms

[z ] [z + (56)ICB(j) i io z B(fl 6j=0 ZB<6> (56

where the second term on the right side of the equation is

the normal force coefficient of the body due to control deflection

of the fins. Substituting Eq. (56) into Eq. (55), one has
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1 (57)

& CZB<6? +LV f(B)J6% -rz Bi *O(7

A simple result of slender body theory is ised tl estimate

C zB<6,. Using the definition of the interference lift ratio,

kB, (see Ref. 24, pp. 213-218), one has

C ZB< ? k B CZf (B)6 ij•O

Substituting this into Eq. (57), one has

4C =11+ kB [ClfJ 1/ - [C s (] j=0(8

k. calculated froom slender body theory is derived assuming

that the angle of attack of the body is zero. One could use Eq.

(58) to calculateCz for any angle of attack and neglect the

inconsistency between this and the derivation of kB. The

present analysis, however, chooses the approach of segregating

the ab = 0 fin deflection interference and then using this

constant value for nonzero ab. Rewriting Eq. (58) according

to this approach, we have

= [ ] [ + =0cf ] (59)

_ C'b=O

Eq. (59) was used in the present analysis foe computing pitch control

forces with fin-body interference. kB is a simple function of a/bo

and is plotted in Fig. 51.
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Figures 52, 53, and 54 show the pitch control force versus angle

of attack for M. = .7 and 1.2 for fin configurations B, C, and D,

respectively. The control force shown in these figures is for 0 = 00

and the horizontal panels deflected 100, that is, 6 1 63 = 100 and

62 = 64 = 00. The agreement between theory and experiment is generally

fair for the three fin planforms and the angle of attack range. It

can be seen from these three figures that the control force for

ab = 0 0 for the three planforms is almost identical. Although the

leading edge sweep angles are 00, 38.70, and 67.40, respectively,

all three planforms have the same aspect ratio; 1.67. The trend

with angle of attack is significantly different for the three

planforms. For Ale = 00 (Fig. 52) the control force drops-off

sharpley with angle of attack; to the extent that for 150 < Ub < 200

a positive control input produces a negative control force.

Note that this phenomenon is not caused by the body vortex wake,

but is caused by the interaction of the nonlinear normal force

curve, i.e., fin stall, and body upwash. For A e = 38.70 (Fig.

53), ACz is nearly constant for low ab and then drops-off with

angle of attack. The experimental data for M. = .7 shows a region

of control force reversal near ab = 170. For A fe = 67.40 (Fig. 54),

ACz is almost constant out to ab = 140 and then shows a slight

decrease with angle of attack. Also note the insensitivity of

ACz with Mach number. This is due to the low Mach number normal

to the leading edge of the planform.

Figures 55, 56, and 57 show the pitch control force versus

angle of attack for all panels deflected 100 (0 = 450) for fin

planforms B, C, and D, respectively. The agreement between theory
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and experiment is generally fair for the three planforms over the

angle of attack range. Similar trends of AC vs angle of attack

are seen in Figs. 55 56, and 57 as compared to Figs. 52, 53, and

54, respectively. For 0 = 450 and 6j = 100, however, no control

reversals are seen over the angle of attack range. Also, the delta

planform (Fig. 57) shows that the control effectiveness increases

slightly with angle of attack up to ab = 120 for both Mach numbers.

b. Roll Control

Figures 58, 59, and 60 show the roll control moment versus

angle of attack for M., .7 and 1.2 for fin configurations B, C,

and D, respectively. These roll control moments are for 0 = 00

and 61 =-63 = 10' and 62 = 64 = 00. The theory generally predicts

larger roll control moments than experiment, but the theoretical

trends with angle of attack are valid. For the rectangular and

clipped delta planform ( Figs. 58 and 59) a large region of roll

control reversal occurs for ab > 150. This region is fairly well

predicted by the present analysss. For the delta planform (Fig.

60) the theory substantially overpredicts the roll control moment

up to ab = 200 and then a control reversal is predicted. The

overprediction near cb = 00 could be due to an inaccurate

spanwise loading or it could be due to a physical characteristic

of control deflection not included in the present theory, that is,

root chord gap. When a fin panel is deflected for control, a

spanwise gap is created at the root chord of the fin. The gap

size increases as the fin deflection and root chord length

increases. For configuration D the root chord length is

100% longer and 50% longer, respectively, than configurations
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B and C. This characteristic would decrease the predicted value of

the roll control moment if it were included in the theory.
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SECTION IV

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A method is described for predicting the forces and moments

produced by fins attached to a missile. The body is assumed to be

a circular cylinder with cruciform fins (or wings) as attached

lifting surfaces. The method is applicable to speeds up through

transonic flow as long as the fin leading edge is subsonic. The

missile can have an arbitrary roll (or bank) angle and each fin

can have arbitrary control deflection. The vortices shed from

the body are assumed to be symmetric as they influence the

loading on the fins.

Extensive comparisons are made between predicted results and

experimental measurements. Included in the comparisons are:

panel normal force, root bending moment, hinge m(ment, induced

roll moment, roll damping moment, pitch control forces, and

roll control moment. The force ar.d -ent predictions are

compared with experimental data for six different fin geometries.

Good agreement between predictions and experiment is obtained for

panel forces and moments and roll moments for all of the fin

planforms. Generally fair agreement is obtained for fin control

forces and moments.

The following conclusions and recommendations are drawn

from the present investigation.

1. The spanwise and chordwise pressure distributions are

of sufficient accuracy to be used as an aid in

estimating root bending and hinge moment structural
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loads. The hinge moment predictions can also be used as

a design aid in sizing control deflection actuators.

2. Evidence was found to suggest that stall near the root

chord on highly swept fins washes oitboard and, consequently,

decreases the outboard loading on ttie fin. Although this

element is not in the present theory, one might concieve

of a method of approximating this phenomenon in the analysis.

3. Certain comparisons between theory and experiment suggest

that the stall angle of attack increases with Mach number.

If sufficient data could be gathered on this trend, it should

be added to the analysis.

4. The results of the present method could be enhanced by

improving the empirical data for the body flow field model

or by using a more accurate body flow field model. An

improved flow model should contain more compressibility

effects.

5. In general, short span fins produce larger nonlinear forces

and moments, such as induced side force and induced roll

moment, than larger span fins. This typically occurs even

though the exposed fin area is smaller.

6. The present method could be improved by requiring the basic

chordwise and spanwise pressure distributions to be dependent

on freestream Mach number. This should be done after suffi-

cient pressure distribution data on wing along planforms was

available for various Mach numbers.

7. The nonlinear decrease in roll damping moment for large angles

of attack was found to be due to the stall angle of attack
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of the fin. The stall angle is primarily determined by

the aspect ratio and leading edge sweep.

8. The present method should be coupled to a body force and

moment predictive method so that complete missile force and

moment predictions are available.

9. The rapid decrease in pitch control force at large angles of

attack is predicted by the method.

10. Predicted roll control reversal at large angles of attack

generally agrees with experimental data.

I1. The present method should prove to be a valuable tool for

missile designers because of its ability to address general

fin planforms.
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Figure 51. Interference Lift Ratio vs a/bo (from Ref. 24)
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Figure 52. Pitch Control Force vs bfor Configuration B
(0 =0, 61= 63 100, 62 640)
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Figure 53. Pitch Control Force vs ab for Configuration C
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Figure 54. Pitch Control Force vs a for Configuration D
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Figure 55. Pitch Control Force vs ab for Configuration B
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Figure 56. Pitch Centrol Force vs ab for Configuration
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Figure 57. Pitch Control Force vs Ob for Configuration
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Figure 58. Roll Control Moment vs at for Configuzation B
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Figure 59. Roll Control Moment vs d for Configuration C
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131



.2

•C 1  86 LQI°I9ofo o

.3

1n -PRESENT 
METHOD, 

M " .7

0.0 -. _PRESENT METHOD, Moo 1.2

o EXP., Moo--.7 (REF. 28)

o EXP., Moo 1.2 (REF. 28)

-

(DEG)

Figure 60. Roll Control Moment vs d• for Configuration 
D

( = 0 • , 6 1 = = = 0 , 2 = 84 = 0 )1

132

m 

--

o



INITIAL DISTRIBUTION

HQ USAF/SAMI 1 LOCKHEED MSL AND SPACE/DR LARS
AFIS/INOT 1 ERICSSON 1
HQ AFSC/DLW 1 NASA LANGLEY RES CTR/DR SAWYER 1

ASD/ENFEA 1 SANDIA NAT LAB/DR OBERKAMPF 13

AFWL/NTSA 2 DEFENSE & SPACE SYS R1/1022
AUL/LSE 71-249 2 TRW, INC/DR SHIVANANDA 1
DTIC-DD4-2 2 UNIV OF OKLAHOMA$ SCHOOL OF

HQ USAFE/DOQ 1 AEROSPACE, MECH AND NUCLEAR
HQ PACAF/OA 1 ENGR/DR JISCHKE 1
HQ PACAF/DOOQ 2 NORTHRUP CORP/DR HUNT 1

COMIPAC/PT-2 1 UNIV OF NOTRE DAME/DR NELSON 1
REDSTONE SCI INFO CTR 2
NAV RESEARCH LAB CODE 2627 1
NAV SYS CMD AIR VEHICLE DIV 1
NAV SYS CMD TECH LIB 1
NAV SURFACE WPN CTR CODE X211 1
NAV AIR TEST CTR 1
USNC CODE 3431 1
SANDIA NATIONAL LAB 1
RAND CORP 1
BATTELLE COLUMBUS LAB 1
AD/SES 2
AFATL/DLODL 2
NAV WPNS EVAL FAC CODE 80 1
USNWC CODE 3163 1
AFATL/DLY 1
ASD/ENESS 1
AD/SD8E 1
AFATL/DLB 1
AFATL/DLJC 1
AFATL/DLMA 1
AD/XRC 1
AD/YME 1
AFATL/DLDL 1
AFATL/DL 1
HQ TAC/DRA 1
HQ TAC/INAT 1
ASD/XRP 1
OO-ALC/MMWMC 1
USA TRADOC ATAA-SL 1
AFATL/DLODR 1
NEAR INC/DR J.N. NIELSEN 2
NAV SURF WPNS CTR/DR YANTA 1
LOCKHEED MSL & SPACE COMPANY

J.P. REDDING 1
NAV SURF WPNS CTR/DR WARDLAW 1
UNIV OF TENN/PROF WU 1
NAV SURF WPNS CTR/DR MORRISON 1
NASA'AMES RES CTR/MR KEENER 1

133
(Reverse of this page is blank)


